Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environments ; 9(9):110, 2022.
Article in English | MDPI | ID: covidwho-2005976

ABSTRACT

In addition to the numerous health effects caused by the COVID-19 pandemic, the scientific community have considered other emerging effects such as water-related impacts worthy of deep investigation. In this regard, the transmission cycle of the SARS-CoV-2 virus from fecal, vomiting, and sputum routes to sewage has led health authorities to diagnose, prevent, and use novel wastewater treatment technologies. Once they enter the gastrointestinal canal of a healthy person, viral particles can infect via the nominal amount of Angiotensin-Converting Enzyme 2 (ACE2) present in alimentary canal cell surfaces and further infect lung, heart, kidney, and other organs. The current review highlights the detection, status, and fate of SARS-CoV-2 from sewage treatment facilities to water bodies. Besides, it addresses the potential wastewater treatment processes to cope with various viruses, especially SARS-CoV-2. Many processes can manage contaminated wastewater and solid wastes over the long term, including membrane technologies, disinfectants, UV-light and advanced oxidation methods like photocatalysis, ozonation, hydrogen peroxide, nanomaterials, and algae. Future work must focus on implementing the selected actions for the treatment of the wastewater released from the COVID-19 hospitals and self-quarantine centers to better regulate future waves of SARS-CoV-2.

2.
J Water Process Eng ; 49: 103077, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1983593

ABSTRACT

The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.

3.
Pathogens ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1348684

ABSTRACT

Wastewater-based epidemiology (WBE) has a long history of identifying a variety of viruses from poliovirus to coronaviruses, including novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The presence and detection of SARS-CoV-2 in human feces and its passage into the water bodies are significant public health challenges. Hence, the hot issue of WBE of SARS-CoV-2 in the coronavirus respiratory disease (COVID-19) pandemic is a matter of utmost importance (e.g., SARS-CoV-1). The present review discusses the background, state of the art, actual status, and prospects of WBE, as well as the detection and quantification protocols of SARS-CoV-2 in wastewater. The SARS-CoV-2 detection studies have been performed in different water matrixes such as influent and effluent of wastewater treatment plants, suburban pumping stations, hospital wastewater, and sewer networks around the globe except for Antarctica. The findings revealed that all WBE studies were in accordance with clinical and epidemiological data, which correlates the presence of SARS-CoV-2 ribonucleic acid (RNA) with the number of new daily positive cases officially reported. This last was confirmed via Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) testing which unfortunately is not suitable for real-time surveillance. In addition, WBE concept may act as a faster protocol to alert the public health authorities to take administrative orders (possible re-emerging infections) due to the impracticality of testing all citizens in a short time with limited diagnostic facilities. A comprehensive and integrated review covering all steps starting from sampling to molecular detection of SARS-CoV-2 in wastewater has been made to guide for the development well-defined and reliable protocols.

6.
Environ Dev Sustain ; 23(9): 12738-12760, 2021.
Article in English | MEDLINE | ID: covidwho-1070887

ABSTRACT

The outbreak of COVID-19 has made a global catastrophic situation that caused 1,039,406 deaths out of 35,347,404 infections, and it will also cause significant socio-economic losses with poverty increasing from 17.1 to 25.9%. Although the spreading rate of COVID-19 is very high on October 6, 2020, the death rate is still less than 2.94%. Nonetheless, this review article shows that the lockdown has induced numerous positive impacts on the environment and on energy consumption. For instance, the lockdown has decreased the electricity demand by 30% in Italy, India, Germany, and the USA, and by 12-20% in France, Germany, Spain, India, and the UK. Additionally, the expenditure of the fuel supply has been decreased by 4% in 2020 as compared to the previous years (2012-2019). In particular, The global demand for coal fuel has been reduced by 8% in March and April 2020 as compared to the same time in 2019. In terms of harmful emissions, the lockdowns reduced the emissions of nitrous oxides by 20-30% in China, Italy, France, Spain, and by 77.3% in São Paulo, Brazil. Similarly, the particulate matter level has been reduced from 5-15% in Western Europe, to 200% in New Delhi, India, which in turn has enhanced the air quality in a never-seen manner in recent times. In some places, such as New York, USA, CO2 emission was also reduced by 5-10%. The water quality, in several polluted areas, has also been remarkably enhanced, for example, the dissolved oxygen content in the Ganga River, India, has increased by about 80%. Traffic congestion has also been reduced worldwide, and in some areas, it has been reduced by 50%, such as New York and Los Angeles, USA. Overall, while the COVID-19 pandemic has shrinked the global economy by 13-32%, the pandemic has also clearly benefited to other sectors, which must be considered as the spotlight for the permanent revival of the global ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL